Machine Learning Operations: Herausforderungen, Chancen und fünf Schritte zur effektiven Operationalisierung

Machine Learning Operations: Herausforderungen, Chancen und fünf Schritte zur effektiven Operationalisierung

In der dynamischen KI- Landschaft sind Machine Learning Operations (kurz: MLOps) der Schlüssel zur Überbrückung der Kluft zwischen Entwicklung und praktischer Umsetzung KI-gestützter Modelle. Aber warum sind so viele Unternehmen zögerlich, diesen vergleichsweise schnell und kostengünstig zu implementierenden Ansatz in die eigenen Arbeitsprozesse zu integrieren? Thomas Telgheider, Director Solution Consulting DACH bei Informatica, gibt Einblicke ist die MLOps-Welt, zeigt Herausforderungen und Chancen für Unternehmen auf und nennt seine fünf Schritte zur erfolgreichen Operationalisierung. 

Herausforderungen bei der Operationalisierung 

Eine der größten Herausforderungen ist die Qualifikationslücke, die sich oft beim Übergang vom Analysten zum Data Scientist zeigt. Erschwerend kommt hierbei hinzu, dass Data Engineers und Data Scientists oft nicht koordiniert arbeiten, was in doppelten Arbeitsgängen bei der Datenvorbereitung oder Modellabweichungen resultiert. In den IT-Abteilungen von Unternehmen kann dies dazu führen, dass nicht immer klar ist, für welche Datensets ein bestimmtes Modell geeignet ist. Auch Unterschiede in Datenattributen können zu fehlerhaften Ergebnissen führen.  

Aber nicht nur technische Herausforderungen können einer erfolgreichen Implementierung im Weg stehen. Governance-Herausforderungen wie Compliance, regulatorische Anforderungen, Audit-Ansprüche, Versionierung und die Erklärbarkeit von Modellen nehmen zu, wenn KI-Modelle sich in diversen Branchen stärker etablieren. 

Datenqualität ist Key 

Die Datenqualität und der Zugang zu hochwertigen, strukturierten Daten sind entscheidende Faktoren für den Erfolg. Unternehmen müssen sicherstellen, dass ihre Datenquellen zuverlässig und gut gepflegt sind, das Training und die Auswahl des passenden ML-Modells erfordern zudem gesonderte Expertise. Hier lauern Stolperfallen, denn ein suboptimal gewähltes Modell kann zu ineffizienten Ergebnissen führen. Schließlich müssen, um Effizienzsteigerungen und größere Datensatzverarbeitungen zu ermöglichen, ML-Modelle auch skalierbar sein. 

Folgende fünf Schritte sind daher der Weg zum MLOps-Erfolg: 

  • Zielklarheit: Der klare Fokus auf unternehmerische Ziele legt den Grundstein für den MLOps-Erfolg. Hierbei gilt es, die individuellen Stärken der Organisation zu nutzen, um maßgeschneiderte KPIs zu definieren. 
  • Datenbeschaffung: Ein reibungsloser Datenaustausch zwischen Data Scientists und Ingenieuren ist entscheidend. Die Beschaffung und Integration von Daten in einem zentralen Datenlager schaffen die Basis für den Erfolg. 
  • Modellentwicklung: Der kreative Prozess der Modellentwicklung erfordert ein solides Fundament. Die enge Zusammenarbeit von Fachexperten und Datenwissenschaftlern gewährleistet optimale Ergebnisse. 
  • Modelleinsatz: Die nahtlose Integration von Modellen in den Geschäftsbetrieb ist ein Schlüssel zum MLOps-Erfolg. Hierbei ist die Validierung anhand von Echtzeitdaten von großer Bedeutung. 
  • Überwachung und Anpassung: Der Lebenszyklus von MLOps endet nicht mit der Implementierung. Die fortlaufende Überwachung und Anpassung von Modellen gewährleistet konstante Leistung und Wertsteigerung. 

Die greifbaren Vorteile einer effektiven Operationalisierung 

Wenn Unternehmen diese Hürden überwinden können, sind die Vorteile hinsichtlich Zukunftsfähigkeit immens. Eine gesteigerte Effizienz durch die Automatisierung von Aufgaben, die zuvor manuell durchgeführt wurden, führt zwangsläufig zu Kosteneinsparungen und stärkt die Arbeitgeberattraktivität – besonders bei Young Professionals. Das Potenzial von Echtzeit-Entscheidungen bietet Unternehmen auch einen klaren Wettbewerbsvorteil: In der Industrie etwa ermöglicht die prädiktive Wartung durch operationalisierte ML-Modelle proaktive Reparatur- und Wartungspläne, die zu weniger ungeplanten Ausfallzeiten führen. 

Fazit 

MLOps kann als Brücke zwischen der ML-Entwicklung und der Operationalisierung gesehen werden. Obwohl es technische und Governance-bezogene Herausforderungen gibt, sind die Vorteile für Unternehmen, die diesen Ansatz meistern, unbestreitbar. Eine erfolgreiche Implementierung von MLOps erfordert darüber hinaus aber auch einen Shift im Mindset der Beteiligten: Die Bereitschaft zur Zusammenarbeit über Fachbereiche hinweg und die Offenheit für datenbasierte Entscheidungen kommt besonders in tradierten Unternehmen einem kulturellen Wandel gleich. Für Unternehmen, die nach Lösungen suchen, um die Lücke zu schließen, bietet Informatica Unterstützung durch die innovative DSML-Plattform. Diese kohärente Integration von Produkten, Komponenten, Bibliotheken und Frameworks richtet sich in erster Linie an Data Science Professionals wie Expert Data Scientists und ML-Engineers.  

Über die Informatica GmbH

Informatica (NYSE: INFA), ein führendes Unternehmen im Bereich Cloud-Datenmanagement, erweckt Daten und KI zum Leben, indem es Unternehmen die Möglichkeit gibt, die transformative Kraft ihrer wichtigsten Ressourcen zu nutzen. Wir haben eine neue Softwarekategorie geschaffen, die Informatica Intelligent Data Management Cloud™ (IDMC), die auf KI und einer End-to-End-Datenmanagementplattform basiert, die Daten über beliebige Multi-Cloud- und Hybridsysteme hinweg verbindet, verwaltet und vereinheitlicht und so Daten zur Modernisierung ihrer Geschäftsstrategien demokratisiert. Kunden in über 100 Ländern und 85 der Fortune 100 vertrauen auf Informatica, um die datengestützte digitale Transformation voranzutreiben. www.informatica.com. Verbinden Sie sich mit LinkedIn, Twitter, und Facebook. Informatica. Where data and AI come to life. 

Firmenkontakt und Herausgeber der Meldung:

Informatica GmbH
Ingersheimer Str. 10
70499 Stuttgart
Telefon: +49 (711) 139840
http://www.informatica.com/de

Ansprechpartner:
Svenja Fellechner
Programme Executive
E-Mail: svenja.fellechner@hotwireglobal.com
Für die oben stehende Pressemitteilung ist allein der jeweils angegebene Herausgeber (siehe Firmenkontakt oben) verantwortlich. Dieser ist in der Regel auch Urheber des Pressetextes, sowie der angehängten Bild-, Ton-, Video-, Medien- und Informationsmaterialien. Die United News Network GmbH übernimmt keine Haftung für die Korrektheit oder Vollständigkeit der dargestellten Meldung. Auch bei Übertragungsfehlern oder anderen Störungen haftet sie nur im Fall von Vorsatz oder grober Fahrlässigkeit. Die Nutzung von hier archivierten Informationen zur Eigeninformation und redaktionellen Weiterverarbeitung ist in der Regel kostenfrei. Bitte klären Sie vor einer Weiterverwendung urheberrechtliche Fragen mit dem angegebenen Herausgeber. Eine systematische Speicherung dieser Daten sowie die Verwendung auch von Teilen dieses Datenbankwerks sind nur mit schriftlicher Genehmigung durch die United News Network GmbH gestattet.

counterpixel

Comments are closed.

Für die oben stehenden Pressemitteilungen, das angezeigte Event bzw. das Stellenangebot sowie für das angezeigte Bild- und Tonmaterial ist allein der jeweils angegebene Herausgeber verantwortlich. Dieser ist in der Regel auch Urheber der Pressetexte sowie der angehängten Bild-, Ton- und Informationsmaterialien. Die Nutzung von hier veröffentlichten Informationen zur Eigeninformation und redaktionellen Weiterverarbeitung ist in der Regel kostenfrei. Bitte klären Sie vor einer Weiterverwendung urheberrechtliche Fragen mit dem angegebenen Herausgeber.